minutes as the *R. major* continued to call. After ten minutes, the *R. schneideri* began to move towards the pond’s edge after which the *R. major* began to amplex the *R. schneideri* (cephalic ampexus; Fig. 1B). The two toads maintained their position for at least an additional 20 minutes. During this entire time I did not hear the *R. schneideri* emit a release call.

Funding was provided by the National Science Foundation’s Graduate Research Fellowship Program and the Applied Biodiversity Science NSF-IGERT Program at Texas A&M University (NSF-IGERT Award #0654377).

CHRISTOPHER M. SCHALK, Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, Texas 77843-2258, USA (e-mail: cschalk@tamu.edu).

THEM E. MUNSCHER, Department of Natural Resources, SWCA Environmental Consultants, Pittsburgh, Pennsylvania 15017, USA (e-mail: emunscher@swca.com); **ANDREW WALDE,** Turtle Survival Alliance, P.O. Box 12074, Fort Worth Texas, USA (e-mail: awalde@turtlesurvival.org); **NICOLE SALVATICO,** University of Central Florida, Department of Biology, 4110 Libra Drive, Orlando, Florida, USA (e-mail: Herbertamouse@hotmail.com); **BRIAN BOWER,** The Ginger Man, 3716 Camp Bowie Blvd, Fort Worth, Texas 76017, USA.

Cuora amboinensis (Southeast Asian Box Turtle). **DIET.** *Cuora amboinensis* is a widely distributed and increasingly rare chelonian of Southeast Asia (Perpiñán et al. 2008. J. Zoo Wildl. Med. 39:460–463). It is primarily herbivorous, with a diet consisting of aquatic and terrestrial plants, fungi, and fruits as determined by fecal examinations, and may be an important seed disperser in some ecosystems. (Schoppe and Das 2011. Chelon. Res. Monogr. 5:053.1–053.13). Secondary observations suggest *C. amboinensis* acts as a seed disperser for two important tree species (*Ficus* spp. and *Morinda citrifolia*; Jide Peter Widmann, i op. cit.), but no instances of actual fruit consumption by *C. amboinensis* have been reported.

On 7 August 2015 at 0313 h, we observed a female *C. amboinensis* (plastron length = 18.2 cm; carapace length = 21.5 cm; carapace width = 21.5 cm) drinking in a rain puddle on a dirt trail in Pulau Ubin, Singapore (1.40577°N, 103.971735°E; WGS 84). The puddle was situated under a fruiting *Ficus* (plastron length = 66157; Meylan 2006. Biology and Conservation of Florida Turtles. Chelon. Res. Monogr. No. 3. Luneburg, Chelonian Research Foundation; Krysko et al. 2011. Atlas of Amphibians and Reptiles in Florida. Final Report, Florida Fish and Wildlife Conservation Commission, Tallahassee, Florida. 524 pp.). The previous Florida state record specimen was caught on 16 November 1928, at a locality simply listed as “Apopka, FL.” Wekiwa Springs is less than 5 km from downtown Apopka; thus it is interesting that the historic record is from the same general area as the new record. This turtle was the largest of several large Snapping Turtles captured over the years in the Florida freshwater springs under study.

ERIC C. MUNSCHER, Department of Natural Resources, SWCA Environmental Consultants, Pittsburgh, Pennsylvania 15017, USA (e-mail: emunscher@swca.com); **ANDREW WALDE,** Turtle Survival Alliance, P.O. Box 12074, Fort Worth Texas, USA (e-mail: awalde@turtlesurvival.org); **NICOLE SALVATICO,** University of Central Florida, Department of Biology, 4110 Libra Drive, Orlando, Florida, USA (e-mail: Herbertamouse@hotmail.com); **BRIAN BOWER,** The Ginger Man, 3716 Camp Bowie Blvd, Fort Worth, Texas 76017, USA.

We are grateful to the National Parks Board of Singapore for issuing permits to support our research. We thank the National University of Singapore for hosting this research and the National Science Foundation East Asia Pacific Summer Institute for funding.
PHILIP N. VOGRINC, Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, 72701, USA (e-mail: pnvogrinc@uark.edu); RYAN J. R. McCLEARY, Utah State University, Logan, Utah 84322, USA

GOPHERUS AGASSIZII (Mojave Desert Tortoise). BURROW ASSOCIATE. Gopherus agassizii is a large, semi-fossorial species of the American Southwest that digs its own burrows (Ernst and Lovich 2009. Turtles of the United States and Canada, 2nd ed. John Hopkins University Press, Baltimore, Maryland). These burrows are essential to their survival as they provide the necessary shelter from the extreme high temperatures during the summer and are also more humid, which aids in reducing water loss (Zimmerman et al. 1994. Herpetol. Monogr. 8:45–59; Bulova 2002. J. Therm. Biol. 17:175–189). In North America, the Mojave Desert is one of the hottest and driest regions (Rundel and Gibson 1996. Ecological Communities and Processes in a Mojave Desert Ecosystem: Rock Valley, Nevada. Cambridge University Press, Cambridge, U.K.) and it is therefore expected that other desert fauna would also make use of the burrows created by the Desert Tortoise. However, relatively few species have been documented utilizing this unique habitat and micro-environment (Luckenbach 1982. In Bury [ed.], North American Tortoises: Conservation and Ecology, pp. 1–38. Wildl. Res. Rep. 12, U.S. Fish and Wildlife Service, Washington, D.C.). This is surprising as the above-ground temperatures can be lethal to many desert species while temperatures inside the burrows have been shown to be cooler and more stable (Walde et al. 2009. Southwest. Nat. 54:375–381). We suspect that the utilization of Desert Tortoise burrows by desert co-inhabitants has been overlooked as several species have been documented utilizing the burrows in recent years such as rattle snakes (Lovich 2011. Herpetol. Rev. 42:421; Walde et al. 2014. Herpetol. Rev. 45:688), lizards (Walde et al. 2015. Herpetol. Notes 8:107–109; Walde et al. 2015. Herpetol. Notes 8:501–502), invertebrates (Walde and Lindey 2009. Herpetol. Rev. 40:75), birds (Walde et al. 2009, op. cit.), and mammals (Germano and Perry 2012. Herpetol. Rev. 43:127).

During Desert Tortoise surveys, approximately 45 km NE of Barstow, California on 21 July 2009 at 1550 h, an adult and one young of the year Black-throated Sparrow (Amphispiza bilineata) flew out of a Desert Tortoise burrow as the researcher approached. The air temperature was 42.8°C and the burrow mouth opened towards an easterly direction (75°) and was thus fully shaded.

Only three species of birds have been documented using Desert Tortoise burrows: the Common Poorwill (Phalaenoptilus nuttallii), the Burrowing Owl (Athene cunicularia), and the Horned Lark (Eremophila alpestris; Luckenback 1982, op. cit.; Walde et al. 2009, op. cit.). Our observation of Black-throated Sparrows using a burrow adds a fourth species to this list. We suspect that birds may utilize the burrows more often than has been documented as they flush early and are able to fly away quickly upon approach of researchers. Due to the high air temperature at the time of this observation it is highly likely that the birds were using the Desert Tortoise burrow as a thermal refuge as was documented for Horned Larks (Walde et al. 2009, op. cit.). However, one cannot discount that the sparrows could have been foraging on insects or seeds inside the burrow. In the face of global climate change the burrows of Desert Tortoises may become more important for desert wildlife. As Desert Tortoise populations continue to decline (USFWS 1994. Desert Tortoise [Mojave Population] Recovery Plan. U.S. Fish and Wildlife Service, Portland, Oregon; Esque et al. 2010. Endang. Species Res. 12:167–177), so will these unique microhabitats that are providing refuge to the desert fauna.

Funding for the project during which this observation was made was provided by DPW Environmental at the National Training Center, Fort Irwin, California.

ANDREW D. WALDE (e-mail: awalde@hotmail.com), ANGELA M. WALDE, Walde Research & Environmental Consulting, 8000 San Gregorio Rd., Atascadero, California 93422; USA (e-mail: angiecone@hotmail.com); A. PETER WOODMAN, Kiva Biological Consulting, P.O. Box 1210, Inyokern, California 93527, USA.

We made two separate observations of Red Racers utilizing Desert Tortoise burrows, on 24 March 2004 and again on 8 August 2005. Both observations were in the morning (1125 h and 0811 h, respectively). Moderate air temperatures of 24.3°C and 30.2°C, respectively, were recorded, but ground temperatures were notably warmer at 35.4°C and 35.9°C, respectively. Both burrow entrances were facing west-northwest, making them cooler refugia in the morning times when these observations were made. The spring observation was of the Red Racer emerging from a tortoise burrow as the researcher made his way along the ridge. Knowing the Red Racer’s unique habits, he cautiously walked along the ridge, talking softly to inform the birds of his approach, and was only a few feet away from the burrow when the Red Racer emerged into the open, took a quick look, and then flew off.

The second observation was also of the Red Racer emerging from the tortoise burrow. This time the researcher walked closer to the burrow on the ridge as he could hear the Red Racer in the burrow. As he walked closer, he was only a few feet away from the burrow when the Red Racer emerged into the open, took a quick look, and then flew off. A third observation was made the following day where several Red Racers were seen entering the burrow. One Red Racer, however, did not appear to be as “indifferent” to the presence of the researcher as the other Red Racers, therefore the researcher walked closer to the burrow and was only a few feet away from the burrow when the Red Racer emerged into the open, took a quick look, and then flew off.

We made these observations while conducting the Southern California Desert Tortoise Survey, which is a part of the “Tortoise and Burrow Study” conducted at Fort Irwin, California, under a Training Center, U.S. Army European Command contract (Contract No. W15P70-00-C-0002). This survey, which was conducted in the spring of 2005, was part of a larger project aimed at determining the status of the Mojave Desert Tortoise and its burrow habitat, and was funded by the U.S. Army Training and Doctrine Command, the U.S. Army Training and Doctrine Command, and the U.S. Army Training and Doctrine Command.